Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724464

RESUMO

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Assuntos
Glioblastoma , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Células-Tronco Neoplásicas , Terapia Viral Oncolítica , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/metabolismo , Terapia Viral Oncolítica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731936

RESUMO

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Assuntos
ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais , Mieloma Múltiplo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Humanos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Camundongos , Linhagem Celular Tumoral , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Sinergismo Farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Regulação para Cima/efeitos dos fármacos
3.
Oncoimmunology ; 13(1): 2348254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737793

RESUMO

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Assuntos
Diferenciação Celular , Neoplasias Colorretais , Memória Imunológica , Células Matadoras Naturais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interferon gama/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos Endogâmicos NOD , Feminino
4.
Biochem Biophys Res Commun ; 710: 149918, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598902

RESUMO

Chimeric antigen receptor (CAR)-modified immune cells have emerged as a promising approach for cancer treatment, but single-target CAR therapy in solid tumors is limited by immune escape caused by tumor antigen heterogeneity and shedding. Natural killer group 2D (NKG2D) is an activating receptor expressed in human NK cells, and its ligands, such as MICA and MICB (MICA/B), are widely expressed in malignant cells and typically absent from healthy tissue. NKG2D plays an important role in anti-tumor immunity, recognizing tumor cells and initiating an anti-tumor response. Therefore, NKG2D-based CAR is a promising CAR candidate. Nevertheless, the shedding of MICA/B hinders the therapeutic efficacy of NKG2D-CARs. Here, we designed a novel CAR by engineering an anti-MICA/B shedding antibody 1D5 into the CAR construct. The engineered NK cells exhibited significantly enhanced cytotoxicity against various MICA/B-expressing tumor cells and were not inhibited by NKG2D antibody or NKG2D-Fc fusion protein, indicating no interference with NKG2D-MICA/B binding. Therefore, the developed 1D5-CAR could be combined with NKG2D-CAR to further improve the obstacles caused by MICA/B shedding.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Neoplasias/imunologia , Neoplasias/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos
5.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653235

RESUMO

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Assuntos
COVID-19 , Evasão da Resposta Imune , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , COVID-19/imunologia , COVID-19/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Animais , Citotoxicidade Imunológica , Regulação para Baixo , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia
6.
Int J Biol Sci ; 20(5): 1578-1601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481806

RESUMO

Background: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR-NK cell efficacy. Claudin-6 (CLDN6) has been reported to be overexpressed in ovarian cancer and may be an attractive target for CAR-NK cells immunotherapy. However, the feasibility of using anti-CLDN6 CAR-NK cells to treat ovarian cancer remains to be explored. Methods: CLDN6 expression in primary human ovarian cancer, normal tissues and cell lines were detected by immunohistochemistry and western blot. Two types of third-generation CAR NK-92MI cells targeting CLDN6, CLDN6-CAR1 NK-92MI cells with domains containing self-activated elements (NKG2D, 2B4) and CLDN6-CAR2 NK-92MI cells with classical domains (CD28, 4-1BB) were constructed by lentivirus transfection, sorted by flow cytometry and verified by western blot and qPCR. OVCAR-3, SK-OV-3, A2780, Hey and PC-3 cells expressing the GFP and luciferase genes were transduced. Subcutaneous and intraperitoneal tumor models were established via NSG mice. The ability of CLDN6-CAR NK cells to kill CLDN6-positive ovarian cancer cells were evaluated in vitro and in vivo by live cell imaging and bioluminescence imaging. Results: Both CLDN6-CAR1 and CLDN6-CAR2 NK-92MI cells could specifically killed CLDN6-positive ovarian cancer cells (OVCAR-3, SK-OV-3, A2780 and Hey), rather than CLDN6 negative cell (PC-3), in vitro. CLDN6-CAR1 NK-92MI cells with domains containing self-activated elements (NKG2D, 2B4) exhibited stronger cytotoxicity than CLDN6-CAR2 NK-92MI cells with classical domains (CD28, 4-1BB). Furthermore, CLDN6-CAR1 NK cells could effectively eliminate ovarian cancer cells in subcutaneous and intraperitoneal tumor models. More importantly, CAR-NK cells combined with immune checkpoint inhibitors, anti-PD-L1, could synergistically enhance the antitumor efficacy of CLDN6-targeted CAR-NK cells. Conclusions: These results indicate that CLDN6-CAR NK cells possess strong antitumor activity and represent a promising immunotherapeutic modality for ovarian cancer.


Assuntos
Claudinas , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Feminino , Receptores de Antígenos Quiméricos/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Apoptose , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos CD28/metabolismo , Células Matadoras Naturais , Imunoterapia/métodos , Imunoterapia Adotiva/métodos
7.
Front Immunol ; 15: 1273942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410511

RESUMO

Introduction: It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods: To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results: Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion: These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.


Assuntos
COVID-19 , Citotoxicidade Imunológica , Humanos , COVID-19/patologia , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , SARS-CoV-2/metabolismo
8.
Front Immunol ; 15: 1282680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318189

RESUMO

Background: Helicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection. Methods: We analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines. Results: In biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells. Conclusion: H. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Evasão da Resposta Imune , Infecções por Helicobacter/metabolismo , Células Matadoras Naturais , Neoplasias Gástricas/patologia , Gastrite/metabolismo , Peptídeo Hidrolases/metabolismo
9.
Cells ; 13(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334638

RESUMO

NKG2D is an activating receptor of natural killer cells that recognizes stress-induced ligands (NKG2DL) expressed by many tumor cells. Nevertheless, NKG2DL downregulation or shedding can still allow cancer cells to evade immune surveillance. Here, we used lentiviral gene transfer to engineer clinically usable NK-92 cells with a chimeric antigen receptor (NKAR) which contains the extracellular domain of NKG2D for target recognition, or an NKAR, together with the IL-15 superagonist RD-IL15, and combined these effector cells with recombinant NKG2D-interacting bispecific engagers that simultaneously recognize the tumor-associated antigens epidermal growth factor receptor (EGFR) or ErbB2 (HER2). Applied individually, in in vitro cell-killing assays, these NKAB-EGFR and NKAB-ErbB2 antibodies specifically redirected NKAR-NK-92 and NKAR_RD-IL15-NK-92 cells to glioblastoma and other cancer cells with elevated EGFR or ErbB2 levels. However, in mixed glioblastoma cell cultures, used as a model for heterogeneous target antigen expression, NKAR-NK cells only lysed the EGFR- or ErbB2-expressing subpopulations in the presence of one of the NKAB molecules. This was circumvented by applying NKAB-EGFR and NKAB-ErbB2 together, resulting in effective antitumor activity similar to that against glioblastoma cells expressing both target antigens. Our results demonstrate that combining NK cells carrying an activating NKAR receptor with bispecific NKAB antibodies allows for flexible targeting, which can enhance tumor-antigen-specific cytotoxicity and prevent immune escape.


Assuntos
Anticorpos Biespecíficos , Glioblastoma , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Interleucina-15/metabolismo , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Anticorpos Biespecíficos/farmacologia , Receptores ErbB/metabolismo
10.
J Exp Clin Cancer Res ; 43(1): 24, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245792

RESUMO

BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) is treated with transurethral resection of bladder tumor (TURBT) followed by intravesical instillation of chemotherapy or Bacillus Calmette-Guérin therapy. However, these treatments have a high recurrence rate and side effects, emphasizing the need for alternative instillations. Previously, we revealed that expanded allogeneic human natural killer (NK) cells from peripheral blood are a promising cellular therapy for prostate cancer. However, whether NK cells exhibit a similar killing effect in bladder cancer (BCa) remains unknown. METHODS: Expansion, activation, and cryopreservation of allogeneic human NK cells obtained from peripheral blood were performed as we previously described. In vitro cytotoxicity was evaluated using the cell counting kit-8. The levels of perforin, granzyme B, interferon-γ, tumor necrosis factor-α, and chemokines (C-C-motif ligand [CCL]1, CCL2, CCL20, CCL3L1, and CCL4; C-X-C-motif ligand [CXCL]1, CXCL16, CXCL2, CXCL3, and CXCL8; and X-motif ligand 1 and 2) were determined using enzyme-linked immunosorbent assay. The expression of CD107a, major histocompatibility complex class I (MHC-I), MHC-I polypeptide-related sequences A and B (MICA/B), cytomegalovirus UL16-binding protein-2/5/6 (ULBP-2/5/6), B7-H6, CD56, CD69, CD25, killer cell Ig-like receptors (KIR)2DL1, KIRD3DL1, NKG2D, NKp30, NKp46, and CD16 of NK cells or BCa and normal urothelial cells were detected using flow cytometry. Cytotoxicity was evaluated using lactate dehydrogenase assay in patient-derived organoid models. BCa growth was monitored in vivo using calipers in male NOD-scid IL2rg-/- mice subcutaneously injected with 5637 and NK cells. Differential gene expressions were investigated using RNA sequence analysis. The chemotaxis of T cells was evaluated using transwell migration assays. RESULTS: We revealed that the NK cells possess higher cytotoxicity against BCa lines with more production of cytokines than normal urothelial cells counterparts in vitro, demonstrated by upregulation of degranulation marker CD107a and increased interferon-γ secretion, by MICA/B/NKG2D and B7H6/NKp30-mediated activation. Furthermore, NK cells demonstrated antitumor effects against BCa in patient-derived organoids and BCa xenograft mouse models. NK cells secreted chemokines, including CCL1/2/20, to induce T-cell chemotaxis when encountering BCa cells. CONCLUSIONS: The expanded NK cells exhibit potent cytotoxicity against BCa cells, with few toxic side effects on normal urothelial cells. In addition, NK cells recruit T cells by secreting a panel of chemokines, which supports the translational application of NK cell intravesical instillation after TURBT from bench to bedside for NMIBC treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Masculino , Animais , Camundongos , Citotoxicidade Imunológica , Interferon gama/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ressecção Transuretral de Bexiga , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Células Matadoras Naturais/metabolismo , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Quimiocinas
11.
Curr Cancer Drug Targets ; 24(2): 204-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37076962

RESUMO

BACKGROUND: Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise. INTRODUCTION: The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells. METHODS: We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively. RESULTS: UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by "sponging" the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors. CONCLUSION: Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Matadoras Naturais , MicroRNAs/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Nat Immunol ; 25(1): 88-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012415

RESUMO

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.


Assuntos
Neoplasias , Linfócitos T , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Perfilação da Expressão Gênica
13.
Front Immunol ; 14: 1250920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077388

RESUMO

Introduction: Radiation pneumonitis is a critical complication that constrains the use of radiation therapy for thoracic malignancies, leading to substantial morbidity via respiratory distress and lung function impairment. The role of Natural killer (NK) cells in inflammatory diseases is well-documented; however, their involvement in radiation pneumonitis is not fully understood. Methods: To explore the involvement of NK cells in radiation pneumonitis, we analyzed tissue samples for NK cell presence and function. The study utilized immunofluorescence staining, western blotting, and immunoprecipitation to investigate CXCL10 and ROS levels, autophagy activity, and NKG2D receptor dynamics in NK cells derived from patients and animal models subjected to radiation. Result: In this study, we observed an augmented infiltration of NK cells in tissues affected by radiation pneumonitis, although their function was markedly diminished. In animal models, enhancing NK cell activity appeared to decelerate the disease progression. Concomitant with the disease course, there was a notable upsurge in CXCL10 and ROS levels. CXCL10 was found to facilitate NK cell migration through CXCR3 receptor activation. Furthermore, evidence of excessive autophagy in patient NK cells was linked to ROS accumulation, as indicated by immunofluorescence and Western blot analyses. The association between the NKG2D receptor and its adaptor proteins (AP2 subunits AP2A1 and AP2M1), LC3, and lysosomes was intensified after radiation exposure, as demonstrated by immunoprecipitation. This interaction led to NKG2D receptor endocytosis and subsequent lysosomal degradation. Conclusion: Our findings delineate a mechanism by which radiation-induced lung injury may suppress NK cell function through an autophagy-dependent pathway. The dysregulation observed suggests potential therapeutic targets; hence, modulating autophagy and enhancing NK cell activity could represent novel strategies for mitigating radiation pneumonitis.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Pneumonite por Radiação , Animais , Humanos , Autofagia , Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Pneumonite por Radiação/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Front Immunol ; 14: 1187665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928520

RESUMO

Introduction: Refractory/relapsed pediatric acute leukemia are still clinically challenging and new therapeutic strategies are needed. Interactions between Natural Killer Group 2D (NKG2D) receptor, expressed in cytotoxic immune cells, and its ligands (NKG2DL), which are upregulated in leukemic blasts, are important for anti-leukemia immunosurveillance. Nevertheless, leukemia cells may develop immunoescape strategies as NKG2DL shedding and/or downregulation. Methods: In this report, we analyzed the anti-leukemia activity of NKG2D chimeric antigen receptor (CAR) redirected memory (CD45RA-) T cells in vitro and in a murine model of T-cell acute lymphoblastic leukemia (T-ALL). We also explored in vitro how soluble NKG2DL (sNKG2DL) affected NKG2D-CAR T cells' cytotoxicity and the impact of NKG2D-CAR T cells on Jurkat cells gene expression and in vivo functionality. Results: In vitro, we found NKG2D-CAR T cells targeted leukemia cells and showed resistance to the immunosuppressive effects exerted by sNKG2DL. In vivo, NKG2D-CAR T cells controlled T cell leukemia burden and increased survival of the treated mice but failed to cure the animals. After CAR T cell treatment, Jurkat cells upregulated genes related to proliferation, survival and stemness, and in vivo, they exhibited functional properties of leukemia initiating cells. Discussion: The data here presented suggest, that, in combination with other therapeutic approaches, NKG2D-CAR T cells could be a novel treatment for pediatric T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Humanos , Criança , Camundongos , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Linhagem Celular Tumoral , Células T de Memória
15.
Front Immunol ; 14: 1227572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965326

RESUMO

The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.


Assuntos
Anticorpos Biespecíficos , Linfoma , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Antígenos CD19
16.
J Med Virol ; 95(10): e29142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815034

RESUMO

Available therapies for chronic hepatitis B virus (HBV) infection are not satisfying, and interleukin-21 (IL-21) and checkpoint inhibitors are potential therapeutic options. However, the mechanism underlying IL-21 and checkpoint inhibitors in treating chronic HBV infection is unclear. To explore whether IL-21 and checkpoint inhibitors promote HBV clearance by modulating the function of natural killer (NK) cells, we measured the phenotypes and functions of NK cells in chronic HBV-infected patients and healthy controls on mRNA and protein levels. We found that chronic HBV infection disturbed the transcriptome of NK cells, including decreased expression of KLRK1, TIGIT, GZMA, PRF1, and increased expression of CD69. We also observed altered phenotypes and functions of NK cells in chronic HBV-infected patients, characterized by decreased NKG2D expression, increased TIGIT expression and impaired interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α) production. Furthermore, these alterations cannot be restored by telbivudine treatment but can be partially restored by IL-21 and anti-TIGIT stimulation. IL-21 upregulated the expression of activating receptor CD16, CD69, and NKG2D on NK cells, enhanced IFN-γ production, cytolysis, and proliferation of NK cells, while anti-TIGIT promoted IFN-γ production in CD56dim subset exclusively in chronic HBV infected patients. Additionally, IL-21 was indispensable for anti-TIGIT in HBsAg clearance in mice bearing HBV. It enhanced IFN-γ production in splenic NK cells rather than intrahepatic NK cells, indicating a brand-new mechanism of IL-21 in HBV clearance when combined with anti-TIGIT. Overall, our findings contribute to the design of immunotherapy through enhancing the antiviral efficacy of NK cells in chronic HBV infection.


Assuntos
Hepatite B Crônica , Animais , Humanos , Camundongos , Vírus da Hepatite B , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/uso terapêutico , Receptores Imunológicos
17.
Biomed Pharmacother ; 168: 115740, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865999

RESUMO

The efficacy of CAR-T cell therapy has been hindered by several factors that are intrinsic to the tumor microenvironment. Many strategies are being employed to overcome these barriers and improve immunotherapies efficacy. Interleukin (IL)- 4 is a cytokine released by tumor cells inside the tumor microenvironment and it can oppose T cell effector functions via engagement with the IL-4 receptor on the surface of T cells. To overcome IL-4-mediated immunosuppressive signals, we designed a novel inverted cytokine receptor (ICR). Our novel CAR construct (4/15NKG2D-CAR), consisted of an NKG2D-based chimeric antigen receptor, co-expressing IL-4R as an extracellular domain and IL-15R as a transmembrane and intracellular domain. In this way, IL-4R inhibitory signals were converted into IL-15R activation signals downstream. This strategy increased the efficacy of NKG2D-CAR-T cells in the pancreatic tumor microenvironment in vitro and in vivo. 4/15NKG2D-CAR-T cells exhibited increased activation, degranulation, cytokine release, and cytotoxic ability of NKG2D-CAR-T cells against IL-4+ pancreatic cell lines. Furthermore, 4/15NKG2D-CAR-T cells exhibited more expansion, less exhaustion, and an increased percentage of less differentiated T cell phenotypes in vitro when compared with NKG2D-CAR-T cells. That is why IL-4R/IL-15R-modified CAR-T cells eradicated more tumors in vivo and outperformed NKG2D-CAR-T cells. Thus, we report here a novel NKG2D-CAR-T cells that could overcome IL-4-mediated immunosuppression in solid tumors.


Assuntos
Citocinas , Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Citocinas/metabolismo , Imunoterapia Adotiva , Interleucina-15/metabolismo , Interleucina-4/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Interleucina-15/metabolismo , Linfócitos T , Microambiente Tumoral , Humanos , Células HEK293
18.
Cancer Immunol Immunother ; 72(12): 4089-4102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801126

RESUMO

The therapeutic potential of adoptive natural Killer (NK) cells immunotherapy in combination with chemoradiotherapy, the main treatment modality for colorectal cancer (CRC), has not yet been explored. Here, we aimed to investigate the efficacy of NK cells to potentiate primary tumor control and improve survival outcomes, especially in combination with low-dose chemoradiotherapy. Ex vivo activated NK cells (> 90% purity) from healthy donors were obtained. NK cells were administered intravenously to the CRC-bearing mice and intensified in vivo in combination with low-dose 5-fluorouracil (0.5 mg/kg or 1 mg/Kg) and irradiated tumors with low doses (2 Gy or 4 Gy). Real-time NK cell cytotoxicity demonstrated a synergistic killing effect of a combination of low-dose chemoradiotherapy, mainly through NKp30 and NKG2D, showing a decrease in NK cell degranulation after blocking NKG2D and NKp30. In vivo tumor characteristics after combination treatment showed decreased CD112, CD155, MICA, and MICB expression. Under the combination strategy, 70% of the mice had free lung metastasis and 90% without secondary gross tumors, indicating suppressed distant metastasis to lung and axillary regions. This combination therapy resulted in significantly synergistic antitumor activity against primary solid tumors compared to chemoradiotherapy only. Furthermore, the intensified NK cell administration showed significantly better primary tumor control and survival outcomes than the non-intensified NK cell administration in a human colorectal HT-29 model treated with low-dose chemoradiotherapy. Optimized NK cell therapy combined with low-dose chemoradiotherapy can provide effective therapeutic potential for intractable cold human colorectal cancer.


Assuntos
Neoplasias Colorretais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais/metabolismo , Quimiorradioterapia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo
19.
Asian Pac J Cancer Prev ; 24(9): 3213-3219, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774074

RESUMO

OBJECTIVE: Chronic Opisthorchis viverrini (OV) infection is the cause of advanced periductal fibrosis (APF), subsequently leading to cholangiocarcinoma (CCA). Natural killer (NK) cells can kill hepatic stellate cells (HSCs), the initiating cells for fibrosis formation, by using the interaction between the natural killer group 2 member D (NKG2D) receptor and its ligand on the HSCs. This can inhibit the fibrosis formation. Major histocompatibility complex class I chain-related A (MICA) is the ligand of the NKG2D receptor and has highly polymorphic characteristics that are involved in NKG2D binding and NK cell activation. This study aimed to investigate the polymorphism of MICA in OV-induced fibrosis. METHOD: MICA typing was performed by polymerase chain reaction- sequence specific primer (PCR-SSP) and sequencing in two groups: OV infection without fibrosis (N = 99) and with fibrosis (N = 290). RESULT: Six alleles were identified and the MICA*010 allele had the highest frequency in both groups. The MICA*00201-02 allele was a protective factor for fibrosis (OR= 0.508, 95%CI= 0.34-0.76, Pc <0.05), while the MICA*019 allele was suggested to be a risk allele for fibrosis (OR=1.95, 95%CI=1.25-3.03, Pc<0.005). In addition, two motifs, glycine (G) at position 14 and glutamine (Q) at position 251, were negatively associated with fibrosis (G14: OR=0.508, 95%CI=0.34-0.76, Pc <0.05 and Q251: OR=0.586, 95%CI=0.41-0.84, Pc <0.05). Moreover, the distribution of the MICA-129 genotype also showed the protective genotype (Pc<0.05, OR=0.319, 95%CI= 0.12-0.54) for fibrosis. The MICA*00201-02 allele encoded all these motifs, and this suggested that it might lead to strong NK cell activation to kill HSCs, subsequently preventing fibrosis formation. CONCLUSION: This study described initial evidence suggesting that the polymorphism of the MICA gene might be a marker for OV-derived periductal fibrosis.


Assuntos
Neoplasias dos Ductos Biliares , Opistorquíase , Opisthorchis , Humanos , Animais , Opisthorchis/genética , Tailândia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligantes , Polimorfismo Genético/genética , Antígenos de Histocompatibilidade Classe I/genética , Fibrose , Opistorquíase/complicações , Opistorquíase/genética , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/genética
20.
Vet Immunol Immunopathol ; 264: 110647, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672843

RESUMO

Non-Hodkin's lymphoma (NHL) is the most frequent hematologic malignancy in humans and dogs. NKG2D is one of the most critical receptors on NK cells, recognizing their natural ligands on malignant cells such as A and B major histocompatibility complex-related proteins (MIC-A and MIC-B). Soluble molecules (sMIC-A and sMIC-B) can interfere with immune synapsis between NK cells and tumor cells, impeding NK cytotoxicity. The main objectives of this study were to analyze, in dogs with diffuse large B cell lymphoma, NK cell lymphoma, and reactive lymphadenopathies, the role of NK cells, their activating receptors NKG2D and NKp46, and their ligands MIC-A and MIC-B, as well as soluble molecules sMIC-A and sMIC-B. Thirty-six dogs with a possible diagnosis of NHL and eight healthy dogs were studied. NHL was diagnosed in 28 (78 %) dogs; in the other 8 (22 %), reactive lymphadenopathies were present. Most of the lymphomas corresponded to B cell NHL (82 %). The most predominant subtype was diffuse large B cell lymphoma (21, 71.5 %), followed by five cases (18 %) that were Non-B Non-T lymphomas (presumably NK cell lymphomas) and other B cell lymphomas (3, 10.5%). There were no cases of T cell NHL. MIC-A was positive in 7 of 27 (26 %) cases of NHL, and MIC-B in 20 of 27 (74 %) NHL. In non-malignant lymphadenopathies, three (37.5 %) dogs were positive for MIC-A, and five (62.5 %) expressed MIC-B. Dogs with lymphoma had higher numbers of NK cells than eight healthy dogs. In 15 dogs (12 cases with NHL and three cases with reactive adenopathies) and eight controls, there were no differences in the number of NK cells expressing NKP46 and NKG2D. NHL dogs had higher values of sMIC-A and sMIC-B. B-cell and NK cell lymphomas correspond to 86 % and 14 % of all canine lymphomas. MIC-A, MIC-B, and sMIC-A and sMIC-B were increased in canine lymphomas.


Assuntos
Doenças do Cão , Linfadenopatia , Linfoma Difuso de Grandes Células B , Animais , Cães , Doenças do Cão/metabolismo , Células Matadoras Naturais , Linfadenopatia/metabolismo , Linfadenopatia/veterinária , Linfoma Difuso de Grandes Células B/veterinária , Linfoma Difuso de Grandes Células B/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA